I

D-A245 506 Noo(zs-‘IO’G-’SBf
\\II\I\\|I‘|\\|\\I'||\|\\|\I'\\\lll\ll\\\\ll\

SAFETY AND STABILITY
IN
CONCRETE BARREL SHELL
ROOF STRUCTURES

David Frederick Kelley

ELEC
JI-\N24 1992

A Thesis
Presented to the Faculty of Princeton University
in Candidacy for the Degree
Master of Science in Engineering

, UTION STATEMENT A

Approved for public release;
Distrtbution Unlimited

——

Recommended for Acceptance by the
Department of Civil Engineering and Operations Research

92 1 16 112

October 1991

92-01
llllllllll!lll!lnillll'IIIMIIHIIIIIIIHIII




| hereby declare that | am the sole author of this thesis.

| authorize Princeton University to lend this thesis to other institutions or
individuals for the purpose of scholarly research.

David F. Kelley

| further authorize Princeton University to reproduce this thesis by photocopying
or by other means, in total or in part, at the request of other institutions or

individuals for the purpose of scholarly research.

David F. Kelley,

Accession For

NTIS GRA&I
DTIC TAB

Uniannounced
Jus.ifieation 13

V]

0o
ISL'\

Bv _
YifFt-ib )
FE} iku chn'/__.__m‘______1
Avelilability Codss

L Avatl and/or

"bist\ Special
YN




Princeton University requires the signatures of all persons using or
photocopying this thesis. Please sign below, and give address and date.




Acknowledgments

| would like to express my heartfelt appreciation to my advisor, Professor David
P. Billington. In my initial conversation with him, we were discussing possible
thesis topics, and he asked me why | had come to Princeton. | wasn’t quite sure
how to answer the question at the time, but | am sure now. | came for the
opportunity to work with quality faculty members like him. People who know
that learning is more than what you get from a book, and teaching is more than
standing in front of a blackboard. Thanks for the inspiration and patience,
Professor!

| am also indebted to my committee members, Professors Robert Mark and
Jiann-Wen Ju, who provided equal inspiration through their courses, and who
read this thesis and offered their suggestions.

I would also like to thank the Civil Engineer Corps of the U.S. Navy, for allowing
me this opportunity. It's not just a job!

A special thank you goes out to the many friends | have met during the year. |
wish you continued success. Especially to John Matteo, who helped me in
reviewing many projects by providing his keen insight and thoughtful words of
wisdom.

Additionally, | would like to thank Captain and Mrs. G, and Jane and Martin, who
all introduced me to Princeton and gave me their never ending support.

Finally, | would like to thank my wife, Teri, who stood by me all the way, and put
up with the person who possessed my body for the last two weeks of writing this
thesis.




\

\

~

Abstract

"~ The debate between Anton Tedesko and Charles S. Whitney which

occurred from the 1930’s through the 1950’s typifies the confusion among
designers in the United States regarding thin shell concrete roof design. Each
man thought his method was correct and designed structures constructed in
America during the first half of the twentieth century. By taking a closer look at
their debate, we can gain some insight into their methods of design. To resolve
the conflict, we then apply modern methods of analysis to analyze a hangar
model Whitney had presented in his articles. A full span analysis is performed
using the finite element computer program P-FRAME. In addition, we address
concerns which were not incorporated into the original analysis. We employ the
methods of Milo S. Ketchum and Robert S. Rowe to compute deflection
moments for the structure. In addition, we use Ketchum and Rowe’s work as
background for developing the Initial Deflection Method of computing buckling
safety factors. To validate the procedure, we compute buckling safety factors

for a variety of structures and compare them to classical formulations. .,
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Chapter One

Introduction

Over the last century, designers such as Eugene Freyssinet, Robert
Maillart, Pierre Luigi Nervi, Felix Candela and Heinz Isler have brought the art
of reinforced concrete design to its mature state.

Isler's thin shell concrete roofs cover many European structures. From
tennis courts to gas stations, his shells provide practical, yet interesting,
solutions to everyday roofing problems.

In the United States, however, reinforced concrete design has not
advanced as it has abroad. A reflection of this lack of progress can be seen in
the content of basic design texts. During the 1950’s, in the well known text book

by George Winter and Arthur H. Nilson, Design of Concrete Structures, an

entire chapter was dedicated to arch and sheil design. In the 1991 edition, the

words arch and shell do not even appear in the index.! Why has this type of
design disappeared from our basic text books?

A possible explanation is that a general confusion exists in America
regarding shell behavior and because of this, key safety questions still remain
unanswered.

This contfusion is clearly demonstrated in the debate between Charles S.
Whitney (1902-1961) and Anton Tedesko (b. 1902) which took place in the
1940’s and 1950’s concerning concrete barrel shell roof design. The design is
a thin concrete barrel shaped shell with arch stiffeners spaced along the length.
The debate focused on how to position the shell in relation to the arches.

Tedesko's opinion was that the shell should be positioned at the rib

extremity. Whitney, on the other hand, believed that the shell should be located
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at the mid-height of the rib. They debated in many engineering publications, but
without resolution.

Tedesko was an Austrian born engineer who had studied civil
engineering at the Technological Institute in Vienna in the early 1920’s, and had
learned thin-shell concrete roof design while working at the firm of Dyckerhoff
and Widmann in Weisbaden. In 1932, because of prior work experience in the

U.S., he was sent to work in America when his firm decided to expand its

operations.2 Once there, he gained an affiliation with the Roberts and Schaefer
Company in Chicago, and stayed on with them to do extensive thin-shell design
work during the 1930's and 40’s. Because of his effort in this capacity, he
introduced thin-shell concrete roof structures to the United States.3 Examples
of his work are the Ice Hockey Arena in Hershey, Pennsylvania which opened in
1936 and the U.S. Navy Hangars at North Island in San Diego, California
designed in 1941.

Whitney was an American born designer who wrote two major articles on
arch design in the 1920’s. In the 1940’s, he developed a new desing method

for barrel shell roofs that he called “. .. a novel feature. . . . which has important
advantages.” 4 In his method, he placed a great emphasis on volume change

moments, which are a function of the cross sectional moment of inertia. The
moments of inertia would be less if the shell was located in the middle of the rib,
thus, this was the better design.

Whitney also designed structures which were constructed in the United
States. An example of his work is the Field House at Syracuse University built
in the 1950's.

We can see, then, that two very different methods of design existed




simultaneously. The debate between Whitney and Tedesko which started in the
literature over 40 years ago, has not been resolved. In this thesis, we will first
examine the different design methods and then utilize modern engineering
tools to clarify the debate.

We look at Whitney’s method by examining calculations which were
prepared for a hangar model and presented in articles published during the
1940’s and 1950’s. Tedesko’s rebuttal to one of the articles is also scrutinized
to examine his ideas on the subject.

In our modern analysis, we use the finite element method to analyze
Whitney’s hangar model. Additionally, we employ the methods of Robert S.
Rowe and Milo S. Ketchum to calculate stress amplification due to deflections in
arches. Using these as a starting point, we develop a method of predicting

buckling loads for arched structures.




Chapter Two
Whitney’s “New lIdea”

Whitney began writing about concrete arch design as early as 1925 with
his article, “Design of Symmetrical Concrete Arches” published in the American
Society of Civil Engineers (ASCE) Transactions. Between 1932 and 1940 he
was the Chairman of the American Concrete Institute (ACI) Committee 312
which was attempting to establish standards for reinforced concrete arch
design. His ideas appear in this committee’s reports published in 1332 and
1940.

it wasn't until after this that he began writing about his method of
concrete barrel shell roof design. He presented his ideas in three articles
published between 1943 and 1955.

The structure Whitney analyzes in developing his claims is a 220 foot
clear span aircraft hangar model. The hangar roof is a parabolic barrel shell
comprised of a 4 inch thick reinforced concrete slab with ribs spaced 20 feet
center to center. The rib cross section varies from 18 x 32 inches at the crown to
18 x 40 inches at each springing. The height of the rib center line above the
supports at mid-span is 27.5 feet, and the roof is supported at each springing by
concrete A-frames. Whitney assumes that the A-frames act to fix the ends of the
barrel shell by restricting translational and rotational motion. Figure 1 is a

longitudinal and transverse section of Whitney's model. This structure was first
presented in his 1944 article “Aircraft Hangars of Reinforced Concrete”.5

The article that we will focus on was published in the ACI Journal in June




1950 under the title, “Cost of Long Span Concrete Roof Shells™. In this articie,

Whitney explains the advantages of his design method:

“An important feature of this type of construction is the placing of the shell
near the neutral axis of the ribs so that the ribs project about half above
and half below the shell. The principal effects of this arrangement
structurally are the elimination of edge stresses in the shell due to rib
fiexure and the reduction of the stiffness of the combined rib and sheil

with a corresponding reduction in volume change moments.” 6

He also develops a chart which shows how his shell positioning reduces

required rib size and thus, construction cost.

m@m Rbs 20 ft on ceutfer
7

u "
ans 20ft on cemter 8" ¢ 32 .a* (rowwn

18" x 40" at sprav\q'lnﬁ
X ——
21 ft
'fi 0 Mse
) Ve
B
‘4——-— — = 20t s spn , >'

Figure 1. Longitudinal and transverse sections of the 220 ft span hangar model

His chart, shown in Figure 2, presents three different crown cross
sections, each based on a 20 foot spacing of the arch ribs. The first cross
section has the shell located at the mid-hsight of the rib, the second has the

shell positioned at the top of a similar rib, and the third has the shell at the top of
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an enlarged rib. The larger rib in the third cross section is necessary, according
to Whitney, to provide the equivalent strength of the first cross section.

To understand Whitney’'s method of design, we will examine the numbers
in his chart. Since Whitney did not publish detailed calculations, we must use
information from his other articles and reports to estimate his results.

As his first table entry, Whitney gives the moment of inertia at the crown.
For the first section, it is computed using the 20 foot width and including
reinforcing steel at the top and bottom of the rib. In the next two sections, he
only uses a 14 foot width in his calculations. He explains that with the siab at
the top of the rib, only 70% of the shell is effective. Whitney does not provide

any background for this assumption in any of his published material, but we can

verify it with a formula published in a 1990 textbook on concrete shell design.”

The effective overhang of one side of the shell, b,, is:

1
be = 0.76(rh);
L2
r = = .
where: 8d with: L= Span

d = Rise

h = Shell thickness

Using Whitney’s data for the hangar model:

be = 6.5 ft
This gives a total overhang of 13 ft. When the rib width is considered, the total
effective width becomes 14.5 ft, which compares very well with Whitney's 14 ft
assumption.

Using Whitney’'s data at the crown for the hangar model, our computed




moments of inertia for the three cross sections are:

Section 1: 58,000 in4
Section 2; 117,200 in?
Section 3: 154,800 in4

These compare very favorably to Whitney’s numbers. Detailed calculations

appear in Appendix A.

Arck cms 4- 7.00.[ iiJ 5".... T 4. ...... T |
Sectiong ; &’ :
es oo XXX 1 e & 000 1
8° 18° 27°

Moment of inertia . ‘ 4
of crown section 58,000 in. 116,300 in. 154,300 in.
Moment due to
live load 1,710,000 in.lb. 1,710,000 in.]b. 1,710,000 in.1b.
Moment due to
volume change 1,026,000 in.lb.| 2,042,000 in.lb.| 2,670,000 in.Ib.
Total moment 2,736,000 in.lb.] 3,752,000in.lb.| 4,380,000 in.lb.
Maximum horiz-
ontal thrust 447,120 1b. 450,170 1b. 508,300 Ib.

Figure 2. Whitney's Data Table

The second entry is live load bending moment. Whitney uses 30 psf as
the live load for all three cross sections. For a 20 foot width, this results in a
distributed load of:
30psf x 20t = wolfltl




in his 1925 article, Whitney derives formulas to compute moments in concrete

arches for different loads with varying cross sections. From Figure 50 in the
1925 article, the maximum positive live load moment at the crown is:8

M = K;p L?

where: p = Uniformly distributed live load
L = Span length in feet
K} = Factor from Figure 50 using entering

arguments N and m

N = Yo _ quarterpoint rise - midspan rise
r midspan rise

with:

Ic

Iscos O

with: ¢ = crown values

m-=

s = springing values

Using Whitney’s data for the hangar model:
m = 0.59 and N=0.25
With these as entering arguments for table 50:
K| = 0.0049
The maximum positive live load moment at the crown is:

M; = 142,300 ft-1b = 1,710,000 in-1b

Whitney presents this vaiue in the table for all three cases. Even though the
cross sectional length for the second and third cases is less, he is assuming the
effective cross section carries the full live load.

To determine load positioning, Whitney uses influence lines. Figures 35-
39 in his 1925 article give influence lines for values of “m” ranging from 0.15 to
0.40 and “N” values ranging from 0.15 to 0.25. From these figures, we can
extrapolate the load positioning necessary to produce maximum positive

moment at the crown for m = 0.59 and N = 0.25, which is shown in figure 3.

8




The third value Whitney lists is the volume change moment. The values

are based on “rib shortening and a temperature drop of 40 degrees F including

the effect of shrinkage.™

|
<0371 7L 026L

Figure 3. Load distribution to produce maximum positive crown moments

Rib shortening results from compressive axial forces in the structure, and
the 40 °F temperature drop accounts for the worst case combination of
temperature change and concrete shrinkage. Obviously, shrinkage produces
an outward thrust with corresponding negative moments at the supports. With a
temperature drop, these two effects wouid add together and make sense when
considered with the 30 psf live load Whitney is using, which is probably a sncw
load.

In the “Aircraft Hangars of Reinforced Concrete” article, Whitney provides
insight to his choice of a 40 °F temperature drop. First of all, he states that
because plastic flow reduces temperature and shrinkage effects, 60% of the
maximum temperature range for a geographical area should be used for
concrete arch calculations. In the article, he presents a table of temperature

ranges for various locations in the United States. We will choose a value from




the table for a location in the south, since this is what Whitney implies he used.
The temperature range of 95 °F for New Orleans, Louisiana is chosen. The
design range is therefore:

95°F x 60% = 57 °F

Assuming that it drops from the mean, our change in temperature will be half of
the design range, or 27 °F. Whitney suggests that the stress caused by
shrinkage in concrete can also be represented by a drop in temperature. Using
his shrinkage value of 15°F results in a total temperature drop 42 °F. 10
The volume change moments are computed by first calculating the

thrusts due to rib shortening and temperature changes. The thrusts are
multiplied by a function of the rise to compute moments. Using Whitney’s 1925
article, Micalos derives formulas for hingeless (fixed) arches. If we assume a

secant variation in the cross section, the formula for computing thrust due to rib

shortening is:1!

- 45 H I
Hgs 4 An h2
where: I. = Crown moment of inertia

h = Mid span rise
Am = Mean rib area
H = Dead and live load thrust

Using Whitney’s data, the thrust due to rib shortening is:
Hgrs = 4,180 1b
The thrust due to temperature changes is computed from:12

Hrt 4 aTEh2

10




where: a = Coefficient of thermal expansion
T =Temperature change

Using Whitney’s data and his recommended coefficient of thermal expansion of
5.5 x10°® in/in/°F, the thrust due to temperature change is:'3

H; = 52701b
The crown moment due to the total volume change thrust is:

M= % h (Hgs + Hy )

With Whitney’s data, the crown moment due to volume changes is:
M = 1,039,000 in-1b

This value compares well with Whitney's value of 1,026,000 in-Ib. Whitney does
not explain his assuming a secant variation in cross section for this calculation.

The table entries for the other two sections vary directly with the moments
of inertia. Thus, the volume change moment at the crown is nearly doubled
when the shell is shifted from the mid-height to the extremity, and it is increased
even more for the larger rib.

The next table entry, the total moment, is simply the addition of the two
previously calculated values. Since the live load moment is the same for all
three cross sections, the total moment varies only with the change in volume
change moments.

Finally, Whitney computes the maximum horizontal thrust caused by the

dead and live loads. Whitney’s formula for computing thrust due to dead load

ig:14

11




}{d= We I-‘2| (g-l)
r k2

where: g = The ratio of springing to crown weight

w, = Crown weight in Ib/ft
L, = One-half the span length

k = cosh’] (g)

Using 150 Ib/ft3 as the weight of concrete, the dead load thrust is:
Hyq = 337,600 Ib

The live load thrust for a load that produces the maximum positive moment at

the crown is:15

- CipL?

H, -

where: C; = A constant computed from Figure
51using mand N

r = Midspan rise
p = Distributed live load
For Whitney’s data:
H; = 62,800 1b

The dead and live load total thrust is:

H = 400,400 1b

This value is 46,720 1b lower than the table value of 447,120 Ib. Whitney must be
considering tha full span live load in his calculations. To compute the full span

live load thrust, we will use the previously defined formula with a C, value for

both maximum positive and negative crown moment live loads:!6

12




H; = 132,000 1b

The total thrust would then be:
H = 469,600 Ib

This is 22,500 1b higher than the table value. Even if we consider the negative
thrust from the volume change calculations, the computed total thrust would still
be 13,000 Ib higher than the table value. Whitney does not give any explanation
for this difference.

In summary, through his table, Whitney shows the importance of volume
change moments in concrete barrel shell roof design. According to his
conclusions, placing the shell at the mid-height of the rib cuts the volume
change moment in half and is the most efficient design. He also claims that with
the shell located at the extremity, the rib must be increased by 50% to give the
equivalent strength of a cross section with the shell at mid-height. He does not,

however, present any calculations to support this claim.

13




Chapter Three

Tedesko’s Design ldeas

Whitney’s ideas did not go unchallenged. The discussions of his papers
raised serious questions as to the validity of his claims. In presenting the
alternate viewpoint, we will focus on two papers in particular. The first is the
discussion of Whitney's 1950 paper “Cost of Long-Span Concrete Roof Shelis”,
and the second is the discussion of the 1940 report of ACl Committee 312,
“Plain and Reinforced Arches” . Both discussions were written by Structural

Engineers from the Roberts and Schaefer Company of New York City, who were

under the direction of Anton Tedesko at the time.?7 Therefore, we will consider
the alternate viewpoint as Tedesko’s.

Tedesko does not agree with Whitney’s claim regarding shell position.
Tedesko believes, instead, that the shell should be positioned at the rib
extremity. He develops an alternate chart which shows that the rib width can be
decreased if the shell is moved to the top or bottom. He supports his arguement
by looking at the stress distribution and by computing buckling safety factors.

We will examine Tedesko’s chart, Figure 4, to gain more insight into his
argument. Tedesko uses four crown cross-sections which he calls cases one
through four. The first two cross sections are the same as presented in
Whitney's table. The third has the shell at the bottom of the 18 inch wide rib,
and the fourth has the reduced rib with the shell at the top.

The first five items are the same ones listed by Whitney. Tedesko carries
the calculations a bit farther, however, by computing stress distributions,

tension force taken by the reinforcing steel and a buckling safety factor.

14




Afok CWSS ’ 4° t 3 4 4"
. 4" . H . .
Sections .Em- h !u- L P T i |1 l
Case 1 Case 2 Case 3 Case 4

Moment of inertia
of crown section, 58,000 116,300 116,300 69,700
in. :

Moment due to
live load, in. -1b 1,710,000 1,710,000 1,710,000 1,710,000

Moment due to
volume change, 1,026,000 2,042,000 2,042,000 1,230,000
in. -1b

Total moment,
in. -1b 2,736,OOOJ 3,752,000 3,752,000 2,940,000

Max. horizontal
thrust. 1b 447,120 450,0001 450,000 408,000

Concrete stress
at top of arch -1,096 -628 -1,091 ~699,
psi

Concrete stress
at bottom or arch, 413 404 -59 663
psi )

Total tension
force in concrete 32,500 44,500 0 46,000
to be taken by (min. reinf.- (min. reinf.- (min. reinf.- (min. reinf.-
reinf., Ib 2.9 sq. in.) 2.9 sq. in.) 29 sq. in.) 2.9 sq. in.)

Relative buckling
safety of arch --
proportional to I 8.7 174 174 10.5 b
(Dischinger's
method)

Figure 4. Tedesko's data chart

The moments of inertia for the first two crown sections are the same as

Whitney's. Tedesko apparently agrees with Whitney's use of the reduced

15




effective width when the shell is moved to the rib extremities. The moment of
inertia for the third cross section is the same as the second since the two are
mirror images. Their only differences will be in the section modulus for the top
and bottom fibers, but this will only affect the stress distribution. For the fourth
cross section, Tedesko computes the moment of inertia using the full 20 foot
width. Since the shell is positioned at the top of the rib, however, the reduced
effective width should be 14 feet. Using the reduced effective width, we
calculate the moment of inertia to be 65,300 in%; 4,400in4 lower than Tedesko’s
table value.

The moment due to live load is the same as Whitney’s and the same for
all four cases. Tedesko is not challenging Whitney's use of the full width loading
on the reduced effective width, the amount of load used, or his load position.

The moments due to volume changes vary directly with the crown
moment of inertia as in Whitney’s table, and the values for the first three cross
sections are the same as before. Tedesko is not questioning the method of
computation. The moment for the fourth case is about 6% too high due to
Tedesko's full width moment of inertia. Using Whitney’'s volume change
moment as a starting point, we calculate the moment for the fourth cross section
to be 1,147,000 in-lb. This is 83,000 in-1b lower than Tedesko's value.

As in Whitney's table, the total moments are computed directly from the
live load and volume change moments. The total for case four using an
effective width of 14 ft is 2,857,000 in-lb.

Tedesko’s table values for horizontal thrust for the first three cases are
the same as Whitney’s. He apparently concurs with the calculations from
Whitney's 1925 articie. The thrust for the fourth cross section is computed using

Whitney’s formulas as well. We concur with this value as it is not affected by the

16




change in moment of inertia.

The next data entry in Tedesko’s chart is the stress distribution across the
crown cross section. This is computed using standard formulas for axial and
bending stress and the appropriate section modulus. Tedesko assumes an
uncracked cross section, therefore, an elastic analysis is implied. Since the
horizontal thrusts are all compressive, and the bending moments at the crown

are all positive, general formulas for computing stresses at the extreme fibers

are:

f = - P_ - M fi, = - B + M...

top: ' A S bottom: ° A Sp
where;: P = Horizontal Thrust

A = Cross sectional Area
M = Total Bending Moment
S = Section Modulus (I /y)

Using Whitney's data for the cross section in case one:
fi. = -1060 psi and fp = + 449 psi

Tedesko’s values are 36 psi lower for both the top and bottom fibers for case
one. To arrive at the stresses listed in the table for the first cross section,
Tedesko is either using a total thrust value of 499,800 1b instead of the listed
value of 447,120 lbs or using a reduced cross sectional area. He does not
explain the change. The stress calculations for the other three cases also differ
from what would be expected from Whitney’'s data, but they do show the trend
Tedesko wants to demonstrate. In case four, the stresses are aimost equally
distributed and even with the reduced rib, the stresses are still well within the
strength of concrete.

Next, Tedasko lists the total tension force to be taken by the reinforcing

17




steel. This is calculated assuming a linear stress distribution and assuming the
concrete does not carry tension. The first step in computing this value is to
determine the distance from the bottom fiber to the neutral axis. This can be
done using a ratio of the table stresses and the rib cepth:

— 413 psi

Yb = (@13 + 1096 psi (32in) = 8.751in

From this, the total tensile force is:

T= % (413psi)(18 in )(8.75 in) = 32,500 1b

This agrees exactly with the table value. With this value for tension, and
assuming a yield stress in the steel of 50 ksi, the required reinforcing steel area
would be less than one square inch. The ACI code for minimum reinforcing
steel area would supersede, thus requiring a reinforcing steel area of:'8

Pmin = 0.005 = i};

(=

Solving for A, using the rib cross section yields:

As = 6.005(576 in?) = 2.88 in2
This explains the table reference to minimum required reinforcing steel and
agrees with Tedesko’s recommended steel area. The tension force and
required steel areas are calculated similarly for the other cases. For case three,
the required tension force is zero since the entire cross section is in
compression at the crown.

Tedesko computes a safety factor against buckling as the last table value

for each cross section. The computations are based on Dischinger's formula:!?

18




v, = 3321 El
H a2

Horizontal Thrust

Effective Modulus of elasticity
One-half the Span Length

= Moment of Inertia at the Crown

where:

H
E
a
I

Using the data for the first cross section with Tedesko’s thrust value of 499,820 Ib
yields a buckling safety factor of:
Vs = 8.8

This value compares very well with the tabie value of 8.7. The safety factors for
the other cross sections are computed using this formula and show how the they
are increased when the shell is moved to the rib extremity. Even with the
reduced rib in case four, the safety factor against buckling is larger than when
the shell is positioned at mid-height.

Using the same hangar model and data as Whitney does, Tedesko has
reached the opposite conclusion. In his table, with the shell moved to the rib

extremity, the rib size can be reduced. Which conclusion is correct?

19




Chapter Four

Resolving the Conflict

Our examination thus far reveals questions which must be addressed to
resolve the shell positioning conflict. In addition to these, other items which
affect the issue are mentioned in the Whitney and Tedesko articles, but are not
incorporated into their tables.

First of all, Tedesko states that additional analysis is required:

“.. . the writers do not believe it justified to assume that an investigation
of the crown of the arch alone can determine the most economic cross
section. Not only do the maximum moments vary in sign and magnitude
along the arch axis, but also the relative importance of the volume
change moments varies. In the lower quarters of the arch the volume
change moments are only a smalil percentage of the total design

moments."20

Although this is a very serious discrepancy, he does not make the full span
analysis he claims is necessary.

Secondly, both sides mention arch deformation effects. And although
they both imply that the deflections are easily approximated, neither side
presents any relative data. Whitney even stresses the importance of

investigating the moments caused by deformations, especially at the crown
section where “the greatest increase in stress due to deflection occurs.”?!

Tedesko gives some justification for not investigating the additional moments:

“. . . deformation moments are of important influence only for arches of
small buckling safety and for arches which do not follow the pressure line
for dead load” 22

He obviously does not consider the deflection moments to be significant in this

design.

20




Also, the two factions address using a reduced Young's Modulus to
account for concrete creep when computing deflections. Whitney states that the

Young'’s Modulus value for concrete should be reduced by two-thirds to three-
quarters to calculate deflections under permanent load.23 Tedesko suggests

using a value of 2,000,000 psi for E_ to account for creep.24

To resolve the question of shell position, we will use an approach that
incorporates analysis methods not available to Whitney and Tedesko and
addresses the additional points mentioned above. Using the four step process
outlined below, we wiil create a table for each of our three cross sections which
we can use to make comparisons between the two design methods. The

resulting tables are attached as appendix B.

REVISED FOUR STEP METHOD OF ANALYSIS

We make a full span analysis of the barrel shell roof section utilizing the
Finite Element computer Program P-FRAME. From the finite element analysis,
we are able to determine dead load moments, positive and negative moments
due to different live load distributions, volume change moments due to
temperature change, axial thrusts at each section and deflections due to the
loadings. We model three different cross sections and create a table for each.

We model the arches using the 20 foot width and 4 inch shell thickness
Whitney specified. The first cross section has the shell at the mid-height of the
rib and will be referred to as the “Whitney Arch”. The second is 14 feet long, has

the shell located at the lower rib extremity and will be referred to as the

21




“Tedesko Arch”. Both of these arches have ribs that vary from 18 x 32 at the
crown to 18 x 40 at the springing. The third section is 14 foot wide, has a
smaller rib and has the shell located at the lower extremity. It will be referred to
as the “Reduced Tedesko Arch”. We chose to position the shell at the bottom of
the rib for the Reduced Tedesko Arch since this will result in a compressive
stress distribution through more of the arch span. Since we are designing in
concrete, this is an important consideration. The rib for this section varies from
9 x 32 at the crown to 9 x 40 at the springing. The three cross sections are
shown in Figure 7.

We used 29 nodes to model each arch, 23 of which are spaced
horizontally from zero to 220 feet at equal 10 foot intervals. The other six nodes
are placed to allow for the live loads necessary to make a full span analysis. To
ensure symmetry, we placed three nodes on each side of the mid-span. Vertical
positions for the nodes were computed using the equation for a parabola. A
one-line diagram of the model is shown in Figure 5.

The moments of inertia at the crown for the first two arches are taken
directly from Whitney's table. We use the corrected moment of inertia from the
Tedesko table for the third. Moment of inertia at the springing is computed using
Whitney's dimensions. These calculations appear in Appendix A. To represent
the varying cross section, we use a linear interpolation between the crown and

springing, adjusting the value every 10 feet. The Young's Modulus for all cases

is 4 x 109 psi, the same as used by Whitney and Tedesko, and the coefficient of

thermal expansion we chose is 5.5 x 1070 inin®F, the value that Whitney

recommends. The end restraints for the arches are modeled as fixed against

both rotation and translation. For all three cases, we chose a linear elastic
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analysis.
To compute dead loads, we input the normal density of concrete, 150

lb/ft3. and P-FRAME computes the weights based on cross sectional areas and
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Figure S. Crown cross sections and One-line diagram for the computer model.
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lengths between the nodes. For the Tedesko arches, an additional externally
applied dead weight was added to account for the reduced effective width. This
was modeled as a uniformly distributed horizontal load. The values for this load

were computed as:

(20‘ ft - 14 ft)(4 in) (le_fitn_)(lso %%) =300 lfltl

The live loads are modeled as uniformly distributed and externally
applied using Whitney's magnitude of 30 psf. For the full span analysis, we had
to load the arch with several different live load distributions to produce
maximum positive and negative moments at the points we wanted to
investigate. Although data is available through P-FRAME for every nodal point,
we concentrated our live load analysis on three significant points; the springing,

the quarter point, and the crown. Each arch is loaded using known distributions

to produce maximum positive and negative moments at the points of interest.25
Load distributions used are shown in Figure 6.

To model the volume change moments, we applied a uniform
temperature change of -40 °F along the full span of each arch. The rib
shortening contribution to the volume change moments is computed directly by
P-FRAME. The program determines the axial deformations due to the applied

dead and live loads.

i lecti n
To compute the additional moments due to deflections,we applied the

theories of Robert S. Rowe and Milo S. Ketchum to the output data from P-
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FRAME. Both of these procedures are based on series approximations of the
defiections. To account for the affect of creep, we used a Young's modulus of

2,000,000 psi in the computer analysis.

CRoW N LEFT QUARTER PoinT LEFT SPRINGING
—]0.25U— t0.4L— “—o.bl-'4
+ Mowment + thowment + Mowment
—40.31SLe- 0,375 Lk— - ko6L— 0.4 L—
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Figure 6. Live load distributions used for Arch analyses

Ketchum's procedure, published in the American Society of Civil
Engineers (ASCE) Transactions, provides a method for computing final
deflections as a function of initial deflection, moment and axial force.2® The
derivation is based on a beam which is loaded both axially and laterally as
shown in Figure 7. In the figure, M, is the moment due to q, the lateral load, w;
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is the deflection caused by the lateral load, w, is the deflection due to the axial
load and w,, is the total deflection. Relating the defiections:

Wo = W + w,
Assuming the elastic deflection curves for both loads are similar to their bending
moment diagrams, a relationship is established between the ratios of the

deflections and moments at the midpoint of the beam:

Wa - Pw,
Wi ML
Solving for w,:
i P
W, Wi MLWo
Since w, =w,-w;:
Wo = W + Wj i‘::’

Regrouping:

Wo (l - %) = W
Solving for w,:

=_‘Nj_

w
° 1-Bwi

Thus, the final deflection, w,, can be computed if the initial deflection, the axial
force and the moment are known. This formula is adapted for our use in

computing deflection moments for the tables in appendix B as follows:
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The deflection moment can be computed if the initial deflection, axial force and
moment at a section are known. The initial data (P, w;, M,) is available from our

computer analysis.

Figure 7. Axially and Laterally loaded beam used in the Ketchum derivation.

Robert S. Rowe's procedure is derrived using a beam loaded both axially

and laterally as shown in Figure 8. Rowe’s method expanded on Ketchum’s
work by applying it to arches as well as beams.27 Rowe's procedure is once

again based on the idea of a series of moments. From Figure 8, the defiection,

Ab, due to the arbitrary lateral load can be expressed as:

o0 ()

where “n” is a bending moment diagram shape tfactor.
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The moment caused by this defliection and the given axial load is:

Muaii = Padp
P
b
A\
W
by~ we

Figure 8. Loaded Beam used in the derivation of Robert S. Rowe's method

This moment causes an additional deflection of:

2 2
B = na (ML) - o (Bael)

Which, in tum, causes an additional moment:

M,=P,Ay=P, (n.—'—g,

Assuming the elastic curve maintains the same shape so the n,’s are similar, the
total moment equation becomes:
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2 2\2
M =My + P, Ab+P,Abn,( %%-)«»P,A,,n}(% o

(Pa L2
a

Since E I ) < 1, this becomes:

2
M =M,+P, Ab(l + n, ‘ % + higher order terms which go to zero

P, L2
El

1-A _
Multiplying through by 1 - A) where A= n,

Mp(1-A) + P,A(1-A2
1-A

M=

With A < 1, A2 goes to zero, therefore:

Mp(l-A) + P.Ay

M= 1-A

Assuming the axial load and lateral load bending moment diagrams are similar,

Ap = np M, L2
Na =0p, and since we know EI  the moment equation becomes:
2 2 L2 P 2
. Mb(l -napéll‘ ) +‘P,n,~—Mé’H _ Mb‘l +"“PEI - N, ELI
l_nP.Lz 1-nP=L2
*EI * EI
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2
1 -n, EQ_I:_
Therefore: El

The total bending moment, including the deformation effects, can be computed
in terms of the bending moment at the section, the axial load at the section and
a bending moment diagram shape factor. This is very similar to Ketchum’s final
result.

Rowe applies this to curved beams. He presents a chart that relates the
displacement ratios in straight and curved beams to the h/L value in the curved
beam. From his chart, we see that for arches with rise to span ratios of less

than 0.15, the deflection in an arch is less than 2% different from that in a

straight beam.28

ing Cr
Stress distributions are computed using the total moments and axial
thrusts at each section and the standard P/A and My/l stress formulas. Results

from these calculations appear in each of the tables.

S 4 ing Buckling Safety F
A revised method of computing buckling satfety factors, based on the
theories of Rowe and Ketchum, is presented in the following chapter. Data for

each arch is presented at the end of this chapter.
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EXPLANATION OF TABULAR DATA

General

We show a full span analysis in the three tables in appendix B. Data is
computed for the crown, the left and right springing and the ieft and right quarter
points. The data is displayed in columns from left to right along the arch length.
An explaration of each line, along with a sample calculation for the “Whitney
Arch” follows. The P-FRAME output file for the Whitney Arch is attached as
Appendix C.

M { inertia. Line (A
Moments of inertia for the first two tables are computed based on
Whitney's data for the crown and springing rib sizes. The quarter point value is
linearly interpolated. Data for the third table is calculated based on Tedesko'’s

reduced rib width, using Whitney’s variation in rib height .

For Whitney’s Arch, the moment of inertia at the crown was previously
computed as 58,000 in. For the given rib dimensions of 18 x 40 at the
springing, the moment of inertia is 110,000 in®. Using a linear interpolation

between the two to compute the quarter point value yields 84,000 in*,

M I iead and live load. Line (B)

These values are taken from P-FRAME output for the cross sections with
positive moments acting clockwise at the left and counter-clockwise at the right
hand end of a segment. The dead load is calculated based on a linear

interpolation of cross section variation every 10 feet. Dead load for the full 20
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foot width is applied for all three arches Load positions for moments due to live
loads are shown for the four cases in Figure 8. P-FRAME data is converted from
ft-kips to in-Ib for easy comparison with Whitney and Tedesko data and is

rounded to four places. For the Whitney Arch at the crown (node 15):

Moment due to dead load = -30.20 ft-kips = -363,000 in-1b

Moment due to live load (1),
(Maximum positive crown Moment) = +136.4 ft-kips = +1,636,000 in-lb

Moment due to live load (2),
(Maximum negative crown Moment) = -133.7 ft-kips

-1,604,000 in-lb

Moment due to live load (3),

(Maximum positive moment at the

Left Quarter Point or Maximum

negative moment at the Left

Springing) = -64.48 ft-kips = -774,000in-lb

Moment due to live load (4)

(Maximum negative moment at the

Left Quarter Point or Maximum

positive moment at the Left

Springing) = +67.10 ft-kips = +805,000 in-1b

Initial Displacemen in

These values are also taken from P-FRAME output and represent
displacement of the nodal points from their initial positions due to the indicated
loads. The displacements shown are in inches and do not include deformation
moment effects. The dead load displacements are computed using E =

2,000,000 psi to account for creep. For Whitney’s Arch at the crown:

Initial Displacement due to Dead Load = -0.345 inches
Initial Displacement due to Live Load case (1) = -0.541 inches
Initial Displacement due to Live Load case (2) = +0.419 inches
Initial Displacement due to Live Load case (3) = +0.180 inches
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Initial Displacement due to Live Load case (4) = -0.302 inches

Axial Tt Line (D)
Once again, the Values are taken directly from P-FRAME output. The
thrusts are normal to the indicated cross section and are listed in kips. For

Whitney’s Arch at the crown:

Axial thrust for Dead Load = 351.6 kips
Axial thrust for Live load Case (1) = 60.6 kips
Axial thrust for Live load Case (2) = 70.6 kips
Axial thrust for Live load Case (3) = 41.1 kips
Axial thrust for Live load Case (4) = 90.1 kips

This would give a total thrust of 412,200 1b for dead plus live load for maximum
positive moment at the crown, and a thrust of 482,800 Ib for dead plus full span
live load. These values are 3% higher than the thrusts of 400,400 1b and
469,600 1b computed using Whitney’'s formulas.

Te rature Change Moments, Line (E

These moments are computed based on the 40°F temperature drop used
by Whitney applied over the entire arch. The rib shortening contribution,
computed by Whitney for his volume change moments, is not included here
since it is computed as part of the Load Moment in line (B). The P-FRAME
output is once again adjusted from ft-kips to in-Ib for comparison with Whitney

and Tedesko table values. For the crown section of Whitney’s Arch:

Temperature Change Moment = 59.87 ft-kips = 718,000 in-1b

If our computed values of dead load, live load for maximum moment at
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the crown, and temperature change moments are added together, we can make
a comparison with the total moment value listed in Whitney's table. The P-
FRAME total moment would be 1,991,000 in-1b. This is 27% lower than
Whitney’s table value of 2,736,000 in-1b.

M I Deflection. Line (F)

As the h/L value for our arch is 0.125, according to Rowe, we can
compute the deflection moments using Ketchum’s methoa. We use P-FRAME
output to compute the axial thrust, initial deflection and moment at the section for
each live load condition. The dead and temperature change loads will not
create deflection moments since they are uniformly distributed across the entire
arch span. The arch axis will not deflect from the funnicular line under these two
loads.

For Whitney's Arch at the crown, the deflection moment at the crown due

to live load case (1) is computed using:

P w;
M= —2i_
=
ML
From P-RFRAME output
for Live load case (1) : P= 60,600 lbs (compression)
w; = -0.541 in

M; = 1,636,000 in-lb

The deflection moment at the crown for live load case (1) I1s:
M =+ 33,000 in-1bs
The moment sign is determined by the orientation of the deflection and axial

force. In this case, the arch is deflecting downward, and the axial force is
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compressive, thus, a positive moment results.

Worst Case Moments (G)

The worst case moments are totaled from Lines B, E and F for dead and
live loads. The live load case which produces the largest appropriate moment
is used in each computation. A circled number appears next to the worst case
moment value to indicate which live load was used. For the crown section of

Whitney’s Arch:

Worst case total Moment = +2,024,000 in-1b

The worst case total moment for the crown results from a live load for maximum

positive moment.

ion Str Line (H
Stresses are calculated based on worst case moments and associated
axial loads. Standard stress formulas are used with the computed cross
sectional areas and section moduli for the appropriate point in the arch. For the
crown section of Whitney’s Arch:

Axial Load for Worst case Total Moment = 412,200 Ib (compression)

Top and bottom fiber stresses:

f, = - 840 psi and f, = + 277 psi

i f r
A safety factor against buckling is computed based on the initial

Deflection Method for arches developed in Chapter 5. First, models of the

35




Whitney Arch, the Tedesko Arch and the Reduced Tedesko Arch are given a
parabolic imperfection. We determine the critical load using the Initial
Deflection Method, and compute a buckling safety factor by comparing the
critical load to the dead load plus the 600 Ib/ft live load used by Whitney. The
finite element analysis program P-FRAME is used to compute the initial
deflections.

For each arch, the initial imperfection is a parabola with a midspan rise of
0.625 ft. We compute the revised nodal coordinates using the transformation
described in Chapter 5. The revised coordinates are input to the P-FRAME
program, and we apply a uniformly distributed horizontal load across the entire
span. To compute the critical load, we must eliminate the rib shortening
contribution. A purely parabolic model of the arch is loaded with the same
uniform load, and the resulting deflections are subtracted from those computed
using the offset model. The final deflections are due to bending moment only.
The critical load occurs when the deflection is equal to the offset.

For Whitney's Arch, at a uniform load of 23.5 kips/ft, the deflections for the

offset model at the three-quarter point (node 23) are:
3,23 =-0.224 in and 8y23=-2.49in
The deflections for the parabolic model are:
8,23 =-2.76in and 8y23 =-9.56 in
This results in a total deflection of:
8 =-7.51in=-0.625 ft

To compute the buckling safety factor, we assume a uniformly distributed dead
load equal to the average cross sectional value. The buckling safety factor for

Whitney'’s arch is:
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Safety Factor = 23.5 /2.2 = 10.7
The P-FRAME input and putput used in this calculation are attached as
appendix D. Using the Initial Deflection Method for the other two arches yields
critical loads of:
Tedesko Arch
Reduced Tedesko Arch

47.5 kips/ft
27.2 kips/ft

The resulting Buckling Safety Factors are:
Tedesko Arch = 25.0

Reduced Tedesko Arch 17.4

These values are higher than the Dischinger values listed in Tedesko’s table,
but show the same trend. Even with a reduced rib, the Tedesko cross section

has a greater safety against buckling than Whitney’s.
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Chapter Five

The Initial Deflection Method
For Computing Critical Buckling Loads

Using the ideas of Rowe and Ketchum, we will develop a relationship
between successive deflections and buckling. The general formuia is

developed using an axially loaded column.

An axially loaded column which is perfectly straight theoretically will not
buckle, regardless of the applied load. It wiil only deform along its axis in

accordance with the well known formula:

§, = PL
AE
where: P = Axially applied load

L = Column length
A = Cross sectional area
E =Young’'s modulus

Given some type of initial imperfection, however, the column will buckle under

sufficient load. For the axially loaded column shown in Figure 11 that has an

initial parabolic otfset with a value of &, at mid-height, the initial moment at the
mid-span is:

M0=P80

This moment , in turn, causes an additional deflection, d,:

8 = M°L2 =(P80>L2
'" 12E1 12E1
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_ p=RLL " o
Letting 12E1, the additional moment due to the deflection & is:

M;= P8 = P§yB

P
i
100 1 0.6l5 1wn.
I
P :

Figure 9. Axially loaded column with initial parabolic oftset

This moment will create an additional defiection , 3,:

- ML2_ 2
5 12E1 % B

The total moment is:
Mr = Mg+ M;+My+... = P8g+P8;+P8+...= P (1+B+B2+...)

Thus, if B is greater than one, the series diverges, the moments will grow without

bound, and the column will buckle. The critical load occurs when B = 1. When

B = 1, the original offset, 8;, and the initial deflection, §,, will be related as:
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8, = By =§

We have defined the critical point in terms of deflection. When the initial
deflection is equal to the original offset, the column is at the critical point. If the
initial deflection is greater than the original offset, the column will buckle. This
criteria is easily applied to output from finite element computer programs. To
check buckling, one only needs to compare the computer generated deflections
to chosen input imperfections.

As a check, we will compare the results from the “Initial Deflection

Method™ with several well known buckling formulations.

Euler Column Buckling

We will check the initial deflection buckling criteria against the classic buckling

problem presented by Euler. His soiution for the critical ioad of a column

hinged at both ends is: 2°

P = n2§_1_

L

where: P = Column axial load
L = Length between the supports
E = Young’'s Modulus
I = Minimum moment of inertia of the cross section

The physical model used is a 100 inch long steel beam with a 12 square inch
cross section which is 6" x 2 “. The beam is hinged at both ends.

Since the chosen cross section results in a minimum moment of inertia of

4 in4, the c:itical load using Euler's formula is:
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P, = 118 kips

To test the Initial Deflection Method, the beam is modeled on the finite
element computer program SAP-90 using frame elements with 11 equally
spaced vertical nodes. The horizontal offset for each node is calculated using a
parabolic equation with the chosen maximum offset as 0.625 inches at the mid-
span. The column is modeled with a pin at the bottom and a roller at the top.
Loads are applied in the negative vertical direction at the top node. The critical
load is one that produces a 0.625 inch deflection at the middle node. To
determine the critical point, we start at the theoretical critical load and perform
iterations until we read a deflection of 0.625 inches on the output.

Using the Initial Deflection Method with SAP-90, the critical load is :

P.. = 116 kips

This is 1.7% lower than Euler’s theoretical value.
Plate Buckling

Next, we check the initial deflection buckling criteria against the theory for a
simply supported plate. The physical structure we model is a 100 inch by 100
inch steel plate which is one inch thick.

The general formula for critical load per length for a simply supported

plate uniformly compressed in one direction is:30

(Nyx)ar = —Et':ag ‘%"'%’2

where: a= Horizontal plate dimension
b = Vertical plate dimension
N, = Load per unit length along the horizontal
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D= ER
and: 12(1-v3

where: E = Young’s modulus
h = Plate thickness

v = Poisson’s ratio

For a square plate, a = b, and this becomes:

For the chosen plate, with E =30 x 106 psi and v =0.3, the flexural rigidity is:
D = 2,747 in-kips

From the Timoshenko formula, the critical distributed load is:

(NJo= 1084 'i‘,u‘-:i

The structure is modeled using the finite element computer program SAP-90
with 100 plate elements. The computer model is composed of 121 nodes with
11 nodes spaced equally along the horizontal, and 11 vertical nodes equally
spaced at each of these. Each vertical line of nodes has a parabolic offset with
a maximum of 0.625 inches at the middle node. The plate is simply supported
on all sides with a pin along the bottom edge and rollers along the other three.
We model the uniform load across the top of the plate as a pressure load.

As with the axially loaded column, the critical loading occurs when the
mid-span horizontal deflection equals the original offset. Using this criteria, we
load the plate at the theoretical critical load, and adjust as necessary until we
see a mid-span deflection of 0.625 inches in the computer output.

Using the Initial Deflection Method, the critical load is:
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kips

(Ner= 911 =2

This result is 15.6 % lower than the theoretical buckling load. This result is

suprising in light of the success with the column data.
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Arch Buckling

in a two hinged parabolic arch, uniformly distributed loads are carried
axially to the supports. Bending moments are zero throughout, and the arch
simply “squats” due to rib shortening. By introducing an initial imperfection as
we did with the axially loaded column, however, bending moments are created

(Figure 12 refers). The moments can be expressed as:
Mo= Pso

where: P = Axial load at the section
3, = initial offset from the funicular line
The greatest moments will occur at the points where the largest offset is located.
These bending moments will, in turn, cause additional deflections. These

deflections are expressed as they were for the axially loaded column as:

5 - MoL2 _ (P3,)L?
'"12E1 -~ 12EI

Using the same derivation as in the case of the axially loaded column, we can
define the critical point of arch buckling in terms of deflection. When the initial
deflection is equal to the original offset, the arch is critically loaded. If the initial
deflection is greater than the original offset, the arch will buckle. To compute
buckling loads using the Initial Deflection Method, we need to compare
computer generated deflections to our chosen offsets.

To validate the Initial Deflection Method for arch buckling, we will
compare it with Timoshenko’s theoretical results. The model we use is a 2
hinged steel arch with a constant 6” x 2" cross section. The arch spans 100

inches horizontally and has a rise of 10 inches.
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Timoshenko’s general formula to compute critical loads for a uniformly
loaded parabolic arch with a constant cross section is:31

=2 EL
L3

where: E = Young's modulus
I = Moment of inertia
L = Horizontal span length
A4, = A factor depending on the height to span
ratio and the number of hinges

Parabolic  Ayci Arch with C)HS@\'
umder UMAOfV\L \OadL u“de‘— M\{'\OfM \OCL&
}\le\,d’m\ Neu*’ﬂ‘
Ax © Load Ine Axe

- 1’\o—~ Load 'iwe

~
~
/g - 0016
Logo | we follows Lowd veoo\® OM
neutral axr frows .u*ﬂl AR

Figure 10. Bending Moments in Arches caused by Initial Offset
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From Timoshenko's Table 7-5 with hL = 0.1, A, = 28.5. The critical load with E

=30x 10%is:

qc = 3.42 kips per inch of horizontal span

The Initial Deflection Method is tested using the finite element computer
program P-FRAME. We model the arch using 21 nodes equally spaced along
the horizontal and compute initial vertical coordinates for these nodes using a
parabolic equation with a rise of 10 inches at the middle node. The arch is free
to rotate and restricted from translating at both ends.

We will apply a parabolic offset to each half span as shown in Figure 11,

/*/ T~ \Moéke_ @ £ = 0.615 n

Node @

Figure 11. Parabolic Offset used in the Computer Model

The maximum offset will be 0.625 inches at each quarter point. Since we want
the nodes to be offset from the initial parabolic curve, each node will have to be

adjusted both vertically and horizontally as shown for node 5 in Figure 12. The
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change in coordinates will be a function of the parabolic offset, 35, and the angle
95 as:

By s = 85(cos 05) and 85 = 8 (sin 6)

Figure 12. Blown up view of the coordinate transformation at node 5

The arch is loaded using uniformly distributed horizontal loads. To
eliminate the affect of rib shortening from the computer output, a purely
parabolic arch model without initial offsets is loaded with a uniformly distributed
critical ioad. The rib shortening deflections are subtracted from the deflections
comnuted using the offset model. The resulting deflections are due to bending
moment only. Once again, the theoretical buckling load is chosen as a starting
point and iterations are performed until we see an adjusted deflection of 0.625
in either half of the arch. Using the Initial Deflection Method, the buckling load
for the arch model is:
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= kips
Pcr = 292 o

This is 14.6% lower than Timoshenko’s theoretical value of 3.42 kips/in.
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Chapter Six

Conclusions

From the debate between Charles S. Whitney and Anton Tedesko we
can draw several conclusions. First of all, Whitney’s 1925 article was a good
guideiine for arch design. His formulas and charts give information which is
backed up by modern methods of analysis. Using only graphic statics and the
Calculus, he computed formulas and charts to determine thrusts and moments
for significant loads and load positions at several points in the arch. For
maximum positive moment at the crown, his distribution is less than 1% different
from accepted design guidelines used from the 1950’s to today. His adjustment
factors allow quick computations for a very diverse range of arch designs.
Although his conclusions for thin shell design are vehemently challenged by
Tedesko, his method of calculating arch thrusts, live load moments and volume
change moments are not.

Secondly, Tedesko’s claim that a full span analysis is necessary for arch
design is valid. By looking at our full span analysis, we can see that stress
distributions at the springing, quarter point and crown must all be investigated.
The crown analysis that Whitney and Tedesko both present is not sufficient to
design a barrel shell roof.

Next, both men were correct in their claim that the deflection moments
are not significant for Whitney’s hangar model at the assumed live loads. We
can see, however, that the deflection moments and corresponding stresses
must be addressed in barrel shell roof design. As the factor of safety against

buckling is reduced, the deflection moments become more significant. The
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methods of Rowe and Ketchum are a reliable way to determine deflection
moments from data available from most finite element programs.

Additionally, Whitney’s emphasis on volume change moments is valid.
His claim that the shell should be located at the mid-height of the rib to reduce
volume change moments is also valid. There is an irrefuteable relationship
between the moment of inertia and the volume change moment. When we look
at stress distributions over the full span and take all loads into account,
however, we see that the decreased moment of inertia has a drawback.
Reducing the moment of inertia increases the tensile stresses near the
supports. The tensile stress at the springing for Whitney’s Arch is double that of
Tedesko s Arch.

Also, there is a significant advantage in placing the shell at the bottom of
the rib as opposed to the top. Because concrete is weak in tension and strong
in compression, we want to reduce tensile stresses as much as possible.
Placing the shell at the bottom of the rib does this. We can see from the stress
distributions for Tedesko’s Arch and Tedesko’s Reduced Arch that tension only
exists in upper part of the cross section for the first and last quarter of the arch.

The Initial Deflection Method is a tool which can be used with existing
finite element computer programs to compute buckling safety factors for a
variety of structures. Although longhand computations of initial offset values are
tedious, this could easily be written into a finite element computer program. The
critical loads computed with the Initial Deflection Method are conservative for
plates, but could provide a ready check for buckling capacity for arches during

an iterative design process.
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APPENDICIES

APPENDIX A: CALCULATIONS FOR MOMENTS OF INERTIA
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Moment of Inertia Calculations

As = As’'=3.0inches,n=7

Iy A Yt Ay, dtona
Rib 49,200 576 16 9220 0
Left Shell 592 444 16 7100 0
Right Shell 592 444 16 7100 0
Top Steel 2 21 2.5 53 13.5
Bottom Steel 2 21 29.5 620 13.5

y=16.0in I = 58,000 in%

Section 2: 18" thick rib with shel | I El 70% effective)
As = As’=3.0inches,n=7

Iy A Yt Ay, dtona
Rib 56,800 618 16 9890 6.9
and Steel
Left Shell 400 300 2 600 7.1
Right Shell 400 300 2 600 7.1

y=9.1in I=117,200 in?
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3830
3830

29,400

15,100
15,100




; ick rib with shell | lange 70% effectiv

As = As’=45inches,n=7

Iy A Yt Ay, dtona Ad?
Rib 73,700 864 16 13,800 53 24,300
Left Shell 376 282 2 564 8.7 21,300
Right Shell 376 282 2 564 8.7 21,300
Top Steel 3 32 2.5 80 8.2 2,150
Bottom Steel 3 32 29.5 944 18.8 11,300
y = 10.7 in I = 154,800 in?
» 0, 'v

As=As’'=15inches,n=7

I, A Vi Ay, dto na Ad?
Rib 24,580 288 16 4608 9.6 26,740
Left Shell 450 318 30 9540 4.4 6160
Right Shell 450 318 30 9540 4.4 6160
Top Steel 0 15 2 3 21.6 700
Bottom Steel 0 15 30 15 4.4 30
y=25.6in I=65,300 in?
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A) Moment of Inertia
(ind)

Whitney Arch

Left

Left

Springing Qtr Pt

110,000 84,000

B) Load Moment (x108 in-Ib)

Dead Load
Live Load 1
Live Load 2
Live Load 3
Live Load 4

C) Initial Displacements (in)
Dead Load
Live Load 1
Live Load 2
Live Load 3
Live Load 4

D) Axial Thrust (kips)
Dead Load
Live Load 1
Live Load 2
Live Load 3
Live Load 4

E) Temperature Change
Moment (x108 in-1b)

F) Deflection Moments
Live Load 1
Live Load 2
Live Load 3
Live Load 4

G) Worst Case Total
Moment (x108 in-1b)

H)Section Stress (psi)
Top
Bottom

-1.936
+2.575
-2.812
-6.572
+6.335

oNoloRo N

397.4
61.8
85.0
56.8
89.9

-1.774

o NoNo R

10.38 (3) +3.433(3) +2.024(1) +2.158(4) -8.106(4)

+1593
-2144

+0.321
-1.535
+1.492
+2.996
-3.010

-0.476
+0.196
-0.260
+1.155
+1.092

362.3
62.8
72.5
429
92.4

+0.096

-0.012
+0.019
+0.050
-0.104

-996
+475

58

Crown

58,000

-0.363
+1.636
-1.604
-0.774
+0.805

-0.345
-0.541
+0.491
+0.180
-0.302

351.6
60.6
70.6
41.1
90.1

+0.718

+0.033
-0.030
-0.007
+0.028

-840
+277

-755
+169

Right Right
Qur Pt Springing
84,000 110,000
+0.321 -1.936
-1.535 +2.576
+1.492 -2.812
-1.686 +4.159
+1.643 -4.396
-0.476 0
+0.196 0
-0.259 0
-0.917 0
+0.980 0
362.3 397.4
62.8 61.8
72.5 85.0
412 39.7
840 107.1
+0.096 -1.774
-0.012 0
+0.019 0
-0.039 0
+0.098 0

+1168
-1780




A) Moment of Inertia
(ind)

B) Load Moment (x10% in-Ib)

Dead Load
Live Load 1
Live Load 2
Live Load 3
Live Load 4

C) Inidal Displacements (in)
Dead Load
Live Load 1
Live Load 2
Live Load 3
Live Load 4

D) Axial Thrust (kips)
Dead Load
Live Load 1
Live Load 2
Live Load 3
Live Load 4

E) Temperature Change
Moment (x10 in-1b)

F) Deflecion Moments
Live Load 1
Live Load 2
Live Load 3
Live Load 4

G) Worst Case Total
Moment (x108 in-1b)

H)Section Stress (psi)
Top
Bottom

Tedesko Arch

Left Left

Springing Qtr Pt
218,400 167,400
-2.354 +0.268
+2.459 -1.527
-2.941 +1.497
-6.643 +2.972
+6.160 -3.002
0 -0.474
0 +0.078
0 -0.155
0 -0.595
0 +0.518
400.5 365.5
61.3 62.3
84.5 71.9
56.6 42.6
89.3 91.7
-3.506 +0.193
0 -0.005
0 +0.011
0 +0.026
0 -0.048

Crown

116,300

+0.002
+1.687
-1.555
-0.744
+0.876

-0.663
-0.309
+0.165
+0.064
-0.208

354.5
60.1
70.0
40.7
89.4

+1.424

+0.019
-0.012
-0.003
+0.019

Right
Qur bt

167,400

+0.268
-1.527
+1.497
-1.685
+1.655

-0.474
+0.078
-0.155
+0.446
-0.524

365.5
62.3
71.9
40.9
93.3

+0.193

-0.005
+0.011
-0.018
+0.050

Right
Springing

218,400

-2.354
-2.459
+2.941
+4.080
-4.562

OCOO0OO0OO

400.5
61.3
84.5
39.4

106.4

-3.506

0
0
0
0

-12.50 (3) +3.481(3) +3.132(1) +2.166(4) -9.939(4)

+1261
-1028

-844
-96
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-958
-95

-684
-219

+897
-923




Reduced Tedesko Arch

Left Left Crown  Right Right
Springing Qtr Pt Qur Pt Springing

A) Moment of Inertia 123,800 94,600 65300 94,600 123,800
(ind)
B) Load Moment (x10° in-1b)

Dead Load -1.506 +0.135 +0.001 +0.135 -1.505
Live Load 1 +2.509 -1.632 +1.663 -1.532 -2.509
Live Load 2 -2.891 +1.496 -1.573 +1.496 +2.891
Live Load 3 -6.617 +2.970 -0.755 -1.684 +4.113
Live Load 4 +6.235 -3.005 +0.846 +1.649 -4.495
C) Initial Displacements (in)
Dead Load 0 -0.507 -0.715 -0.507 0
Live Load 1 0 +0.153 -0.520 +0.153 0
Live Load 2 0 -0.256 +0.325 -0.256 0
Live Load 3 0 -1.041  +0.132 +0.800 0
Live Load 4 0 +0.938 -0.327 -0.903 0
D) Axial Thrust (kips)
Dead Load 318.9 291.7 2829 291.7 318.9
Live Load 1 61.5 62.5 60.3 62.5 61.5
Live Load 2 84.7 72.2 70.2 721 84.7
Live Load 3 56.7 42.7 40.9 41.0 39.6
Live Load 4 89.5 92.0 89.7 93.6 106.7

E) Temperature Change -1.989 +0.107 +0.805 +0.107 -1.989
Moment (x108 in-1b)

F) Deflection Moments
Live Load 1 0 -0.010 +0.032 -0.010 0
Live Load 2 0 +0.019 -0.023 +0.019 0
Live Load 3 0 +0.045 -0.005 -0.033 0
Live Load 4 0 -0.089 +0.030 +0.089 0
G) Worst Case Total
Moment (x108 in-1b) -10.11 (3) +3.257(3) +2.501(1) +1.980(4) -7.989(4)
H)Section Stress (psi)
Top +2189 -1355 -1350 -1001 +1600
Bottom -1074 -94 -126 -245 -978
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_0ad Case Results
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Frinter Bamier Goes Here
TEMFERATURE LOSD OF 40 DEGBREES F
WHITNEY'S ARCH

x%x% SUPPORT REACTIONS %%

-0ad Case Results

o1n oad X-Reaction Y-Reaction Z-Reaction
Number Case (kips) (kips) (K=-ft)
4 1 -7 . 555 2L 000 147 .8982
2o 1 7.555 OL 000 -147.8%2
F=FRaMD Linear tlastic analysie results Str Nao. ©
CLIFELLEY 0% Sep 91 1:02 p
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{HECE OF moner Fisk

STS VHRIOLS
WHITNEY £&c Fi

SFAN

AFCH

#%% MEMBER LOAD DATA #*#«

load case 1| - member distributed loads

Rec Mem Sloped UDL Proj. UDL Local UDL Local UDL
No. No. K/ft slope K/ft horiz k/ft perp K/ft parll
i i1 O -ué Q 0O
S 0 -. b O O
3 i3 Ci - D (8]
[ e i -5 0 O
= is v -.6 (8] O
& 1é O -6 O 0O
I 0 —.b 8 O
& 15 i -. 58 1) <)
load case 2 - member distributed loads
Rec Mem Sloped UDL Proj. UDL Local UDL Local uUDL
No. No. K/ft slope K/ft horiz k/ft perp K/ft parll
! ' T -.& ) T
o . - éy i 0
{ 3 i - Q) QO
- i U - & 9] O}
5 bl i - W i
) & i -. 6 1 8]
" - i -.& i O
& = ] . & 0 O
< 5 [ - i) ¥
1 i RS i) v
1 ) — b L) i)
1z ] () LN W] i)
153 =i " — e O O
T 0 K -.6 W] '
) TR i -l 0 C
1e iy ) —-.& i 8]
1 FE ' - & 1) U
18 2o W - .0 i i
1¢ a7 ) -. 6 G 0
2 2 ) -6 %) 0
load case 3 - member distributed loads
Rec Mem Sloped UDL Proj. UDL Local UWDL Local UDL
No. No. K/ft slope K/ft horiz k/ft perp K/ft parll
1 | ) —.5 i Q)
= c O -.6 G O
A = 0 -. & G )
-4 4 0 -.6 ) 0
- i Vi . V) %)
& e 1 - . [ (W)
- . W) W
a 4 X -.& O D
=2 & i . & ( O
| R R ) ~.& ) O

LOADIMNGS

Triangular Thermal
K/ft @ GJ Change (F)
i) ]
C: O
O <
i O
) [#]
i i)
[ O
) Q
Trianqular Thermal
K/7ft @ GJ Change (F)
0 )
i C
O O
) O
i O
V O
i G
O Q
ri Q)
O
] Q
iy O
iy G
0 )
1) i)
(%] (8]
i 0
) O
W Q
O 0
Triangular Thermal

K/7ft @ GJ Change (F.
i Q
O O
[y Q
O )
1) O
8] O
vy w
W] O
O C
i )




CHECE OF HOMZKNTS FOR VYARTOUS LOALINGS
WHITKREY 280 FT SFer ARCH

load case 3 - member distributed loads
Rec Mem Sloped UDL Proj. UDL Local UDL. Local UDL Triangular Thermal
No. No. K/ft slope K/ft horiz k/ft perp K/7ft parll K/ft 2 GJ Change (F)

11 11 O -—.5 Q O O 8]
load case &4 - member distributed loads
Rec Mem Sloped UDI Proj. UDL Local UDL. Local UDL Triangular Thermal
No. No. K/ft slope K/ft horiz k/ft perp K/ft parll K/ft 2 GJ Change (F)

1 1R G —d O O ) O
2 13 0 -.6 0 . O O
3 14 O .6 Q O 0 )
4 15 i -5 O Cr O 0
TR ) 0 - S 0 O G O
& 1% 0 — .t 0 i 8 Q
7 = i - & %) ) %) O
8 :5 v -.é U 0 ] g
5 20 I} - & 1) 1 O )
10 25 v -.6 X L ] Q
11 g2 Rl = G J Cow G
ig g% L - .t G £ o 0
13 2a o -.6 0 O i o
14 25 ] ~-.5 D 0 G @)
15 5 %] - & O O O
16 &7 it —. o £ 0 D O
17 fs i ~. € O i v Q

Hotes:

1. Slopcd UDL., Frogccted UDL & Foint Loseds ect :o tive glebal ceoordinste system.

2. Lecal Fovpenogrcniler, Lecal Parsllel, Triangulear Loads act in

the local membei- coordinate svwetem.
3. Tiiangulsr Leads are O at the lower joisal with the magnitouie specified at

tho grester o1t
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CRITICAL LOAD ON WHITNEY ARCH

* kX X X%

3 y - ; listributed load
ec Mem Sloped UDL Proj. UDL Local UDL Local UDL Triangular Thermal
o. No. K/ft slope K/ft horiz k/ft perp K/ft parll K/ft @ GJ Change (F)

1 1 0 -23.5 0 0 0 0
2 2 0 -23.5 0 0 0 0
3 3 0 -23.5 0 0 0 0
& & 0 -23.5 0 0 0 0
5 5 0 -23.5 0 0 0 0
() 6 0 -23.5 0 0 0 0
7 7 0 -23.5 0 0 0 0
8 8 0 -23.5 0 0 0 0
9 9 0 -23.5 0 4] 0 0
10 10 0 -23.5 0 0 0 0
11 11 0 -23.5 0 0 0 0
12 12 0 -23.5 0 0 0 0
13 13 0 -23.5 0 0 0 0
14 14 0 -23.5 0 0 0 0
1S 15 0 -23.5 0 0 0 0
16 16 0 -23.5 0 0 0 0 :
17 17 0 -23.5 0 0 4] 0
18 18 0 -23.5 0 0 0 0
19 19 0 -23.5 0 0 0 1]
20 20 0 -23.5 0 0 0 0
21 21 0 -23.5 0 0 0 (0]
22 22 0 -23.5 0 0 0 0
23 23 0 -23.5 0 0 0 0
26 24 0 -23.5 0 0 0 4]
25 25 0 -23.5 0 0 0 0
26 26 0 -23.5 0 0 0 0
27 27 0 -23.5 0 0 0 0
28 28 0 -23.5 0 0 0 0
lotes:

)
»

Sloped UDL, Projected UDL & Point Loads act in the global coordinate system.
. Local Perpendicular, Local Parallel, Triangular Loads act in
the local member coordinate system.
Triangular Loads are 0 at the lower joint with the magnitude specified at
the greater joint.
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Joint
Numbexr

1
2
3
&
S
6

7

8

9
10
11
12
13
14
15
16
17
i8
19
20
21
22
23
24
25

Load
Case

1

1

CRITICAL LOAD ON PARABOLIC ARCH

WHITNEY'S ARCH

XX X

X-Displ. Y-Displ.

(in) (in)
0.00000 0.00000
-.04866 -.16462
-.01909 -.51629
.05002 -.99971
.12996 -1.56879
.19793 -2.17521
22448 -2.48533
.2L696 ~-2.80579
.26556 ~3.41666
26262 -3.93464
.23091 -4.04874
.20001 -4.28527
.18682 -4.36562
.10299 -4.66788
0.00000 -4.,77585
-.10299 -4.66788
-.18682 -4.36562
-.20001 ~4.28527
-.23091 -4.04B74
-.24262 -3.93464
-.26556 -3.41666
-.2L696 -2.80579
-.22448 -2.48533
-.19793 -2.17521
-.12996 -1.56879

85

* XX

Rotation
(rad)

0

.00000
.00183
.00320
.00413
.00470
.00482
.00506
.00520
.00460
.00372
.00366
.00331
.00322
.00171
.00000
.00171
.00322
.00331
.00366
.00372
.00460
.00520
.00506
. 00482

.00470




Joint
Numbex

26
27
28

29

CRITICAL LOAD ON PARABOLIC ARCH

WHITNEY'S ARCH

Load X-Displ. Y-Displ. Rotation

Case (in) (in) (rad)
1 -.05002 -.99971 .00413
1 .01909 -.51629 .00320
1 .04866 -.16462 .00183
1 0.00000 0.00000 0.00000
86




Joint
Numbexr

1

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

25

esult
Load
Case
1

1

CRITICAL LOAD ON WHITNEY ARCH

* k%
X-Displ.
(in)
0.00000
-.33012
-.89038
-1.45051
-1.87802
-2.12684
-2.18403
-2.19963
-2.14320
-2.03244
-2.00695
-1.95114
-1.93647
-1.91131
-1.99977
-2.18B664
-2.43345
-2.68345
~-2.61526
-2.66847
-2.82642
-2.83337
-2.76211
-2.63772

-2.21944

87

Y-Displ.
(ir

0.00000

- 40387
1.37969
2.48996
3.39780
3.87432
3.89519

3.74565

[\N]

.96761
1.59980
1.16961

.10760
-.31791
-2.61165
-5.0119¢
-7.23630
-9.00986
-9.2915¢
-9.92319

-10.13806

-10.50458

-10.06358

-9.56067
-8.88741

-7.08717

X %%k

Rotation
(rad)

0

.00000
.00688
.00962
.00913
.00628
.00194
.00086
.00373
.00885
.01357
.01479
.01710
.01787
.01589
.01969
.01708
.01235
.01128
.00805
.00654
.00018
.00679
.00969
.01237

.01591




R T ¥
Number Case

26 1

27 1

28 1

29 1

CRITICAL LOAD ON WHITNEY ARCH

X-Displ. Y-Displ. Rotation
(in) (in) (rad)
-1.59238 -4.85981 .01892
-.86867 -2.61023 .01736
-.23086 -.77844 .01128
0.00000 0.00000 0.00000

8%




W

Joint X - cooxd.
Number (feet)
1 0
2 9.919
3 19.87
4 29.84
) 39.83
6 49.84
7 54.86
8 59.88
9 69.92
10 79.94
11 82.45
12 87.96
13 89.98
14 100
15 110
16 120
17 129.98
18 131.98
19 137.46
20 139.95
21 149.94
22 159.92
23 164 .88
24 169.86
25 179.83
26 189.89
27 199.87
28 209.99
29 220

CRITICAL LOAD ON WHITNEY ARCH

* %k X

Y - coord.
(feet)

0
4.963
9.438
13.43
16.92
19.92
21.24
22.42
24 .43
25.95
26.25
26.8
26.96
27 .48
27.5
27.08
26.22
26
25.31
24.97
23.31
21.22
20.02
18.72
15.82
12.49
8.774
4.583
0

£ 334
‘ X - Degree
of Freedom

Y N T O O Y o el e e e el e =)

Y - Degree
of Freedom

ORPRHRPPHHEHEMEHERBRABHRBEREBHBRHERBRREP RO

Z - Degree
of Freedom

ORI b bt i i b e e b e e e i 2O

Note: Degree of Freedom: O=restrained l1=free j=coupled to joint 'j'
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